Costa Code + AI Agents Integration

Connect Costa Code’s enterprise AI models to any AI agent or custom application using our OpenAI-compatible API with enterprise-grade security and compliance.

Universal API Integration

Costa Code provides an OpenAI-compatible API that works with virtually any AI agent, custom application, or automation tool. This allows you to integrate enterprise-grade AI capabilities into your existing workflows while maintaining the highest security standards.

OpenAI Compatible

Drop-in replacement for OpenAI API with enhanced security

Enterprise Security

Zero-trust architecture with comprehensive audit logging

Flexible Integration

Works with any tool that supports OpenAI API format

Custom Headers

Additional enterprise security and compliance controls

API Configuration

Base Configuration

export COSTA_API_KEY="costa_ent_your_key_here"
export COSTA_BASE_URL="https://ai.costa.app/api/v1"
export COSTA_MODEL="costa/enterprise-coder-v1"

Integration Examples

Python SDK Integration

import openai

# Configure Costa Code as OpenAI provider
client = openai.OpenAI(
    api_key="costa_ent_your_key_here",
    base_url="https://ai.costa.app/api/v1"
)

# Basic chat completion
response = client.chat.completions.create(
    model="costa/enterprise-coder-v1",
    messages=[
        {"role": "user", "content": "Write a secure Python function for user authentication"}
    ],
    max_tokens=1000,
    temperature=0.7
)

print(response.choices[0].message.content)

# With enterprise security headers
response = client.chat.completions.create(
    model="costa/secure-claude-3-5-sonnet",
    messages=[
        {"role": "user", "content": "Review this code for security vulnerabilities"}
    ],
    extra_headers={
        "Costa-Security-Level": "maximum",
        "Costa-Data-Residency": "us-east",
        "Costa-Audit-Enabled": "true",
        "Costa-Zero-Retention": "true"
    }
)

JavaScript/Node.js Integration

import OpenAI from 'openai';

// Configure Costa Code client
const openai = new OpenAI({
  apiKey: 'costa_ent_your_key_here',
  baseURL: 'https://ai.costa.app/api/v1'
});

// Basic completion
async function generateCode(prompt) {
  const completion = await openai.chat.completions.create({
    model: 'costa/enterprise-coder-v1',
    messages: [{ role: 'user', content: prompt }],
    max_tokens: 1000,
    temperature: 0.7
  });
  
  return completion.choices[0].message.content;
}

// Enterprise security completion
async function secureGeneration(prompt, securityLevel = 'high') {
  const completion = await openai.chat.completions.create({
    model: 'costa/secure-claude-3-5-sonnet',
    messages: [{ role: 'user', content: prompt }],
    max_tokens: 1500,
    extra_headers: {
      'Costa-Security-Level': securityLevel,
      'Costa-Audit-Enabled': 'true',
      'Costa-Data-Residency': 'us-east'
    }
  });
  
  return completion.choices[0].message.content;
}

// Usage
const code = await generateCode('Create a REST API for user management');
const secureCode = await secureGeneration('Review this payment processing code', 'maximum');

cURL Examples

curl -X POST "https://ai.costa.app/api/v1/chat/completions" \
  -H "Authorization: Bearer costa_ent_your_key_here" \
  -H "Content-Type: application/json" \
  -d '{
    "model": "costa/enterprise-coder-v1",
    "messages": [
      {
        "role": "user",
        "content": "Write a secure authentication middleware for Express.js"
      }
    ],
    "max_tokens": 1000,
    "temperature": 0.7
  }'

AutoGPT Integration

ai_provider: custom
api_base: https://ai.costa.app/api/v1
api_key: costa_ent_your_key_here

models:
  fast_llm: costa/enterprise-coder-v1
  smart_llm: costa/secure-claude-3-5-sonnet
  
security:
  audit_enabled: true
  data_residency: us-east
  security_level: high

headers:
  Costa-Security-Level: high
  Costa-Audit-Enabled: "true"
  Costa-Data-Residency: us-east

LangChain Integration

from langchain.llms import OpenAI
from langchain.chat_models import ChatOpenAI
from langchain.schema import HumanMessage

# Configure Costa Code as LangChain provider
costa_llm = ChatOpenAI(
    openai_api_key="costa_ent_your_key_here",
    openai_api_base="https://ai.costa.app/api/v1",
    model_name="costa/enterprise-coder-v1",
    temperature=0.7
)

# Use with LangChain chains
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate

prompt = PromptTemplate(
    input_variables=["task"],
    template="Write secure, enterprise-grade code for: {task}"
)

chain = LLMChain(llm=costa_llm, prompt=prompt)
result = chain.run(task="user authentication system with MFA")

# Enterprise security configuration
costa_secure = ChatOpenAI(
    openai_api_key="costa_ent_your_key_here",
    openai_api_base="https://ai.costa.app/api/v1",
    model_name="costa/secure-claude-3-5-sonnet",
    model_kwargs={
        "extra_headers": {
            "Costa-Security-Level": "maximum",
            "Costa-Audit-Enabled": "true"
        }
    }
)

Custom AI Agent Template

import requests
import json
from typing import Dict, List, Optional

class EnterpriseAIAgent:
    def __init__(self, api_key: str, default_model: str = "costa/enterprise-coder-v1"):
        self.api_key = api_key
        self.base_url = "https://ai.costa.app/api/v1"
        self.default_model = default_model
        self.session = requests.Session()
        self.session.headers.update({
            "Authorization": f"Bearer {api_key}",
            "Content-Type": "application/json"
        })
    
    def execute_task(
        self, 
        task: str, 
        model: Optional[str] = None,
        security_level: str = "high",
        compliance_frameworks: List[str] = None,
        **kwargs
    ) -> Dict:
        """Execute AI task with enterprise security"""
        
        headers = {
            "Costa-Security-Level": security_level,
            "Costa-Audit-Enabled": "true",
            "Costa-Data-Residency": kwargs.get("region", "us-east")
        }
        
        if kwargs.get("zero_retention", False):
            headers["Costa-Zero-Retention"] = "true"
        
        if compliance_frameworks:
            headers["Costa-Compliance-Frameworks"] = ",".join(compliance_frameworks)
        
        payload = {
            "model": model or self.default_model,
            "messages": [{"role": "user", "content": task}],
            "max_tokens": kwargs.get("max_tokens", 1000),
            "temperature": kwargs.get("temperature", 0.7)
        }
        
        response = self.session.post(
            f"{self.base_url}/chat/completions",
            headers=headers,
            json=payload
        )
        
        response.raise_for_status()
        return response.json()
    
    def code_review(self, code: str, framework: str = "general") -> Dict:
        """Perform security-focused code review"""
        
        model_map = {
            "hipaa": "costa/compliance-assistant",
            "sox": "costa/compliance-assistant", 
            "pci": "costa/compliance-assistant",
            "general": "costa/secure-claude-3-5-sonnet"
        }
        
        task = f"Perform a comprehensive security review of this code for {framework} compliance:\n\n{code}"
        
        return self.execute_task(
            task=task,
            model=model_map.get(framework, "costa/secure-claude-3-5-sonnet"),
            security_level="maximum",
            compliance_frameworks=[framework] if framework != "general" else [],
            zero_retention=True
        )
    
    def generate_code(self, requirements: str, language: str = "python") -> Dict:
        """Generate enterprise-grade code"""
        
        task = f"Generate secure, enterprise-grade {language} code for: {requirements}"
        
        return self.execute_task(
            task=task,
            model="costa/enterprise-coder-v1",
            security_level="high",
            max_tokens=2000
        )

# Usage example
agent = EnterpriseAIAgent("costa_ent_your_key_here")

# Generate secure code
code_result = agent.generate_code(
    "User authentication system with JWT and rate limiting",
    language="python"
)

# Review code for compliance
review_result = agent.code_review(
    code="def process_payment(card_data): ...",
    framework="pci"
)

print("Generated code:", code_result["choices"][0]["message"]["content"])
print("Security review:", review_result["choices"][0]["message"]["content"])

Enterprise Headers Reference

Error Handling

import requests
from requests.exceptions import RequestException

def safe_costa_request(api_key, model, messages, **kwargs):
    """Make a safe request to Costa Code API with error handling"""
    
    headers = {
        "Authorization": f"Bearer {api_key}",
        "Content-Type": "application/json",
        "Costa-Security-Level": kwargs.get("security_level", "high"),
        "Costa-Audit-Enabled": "true"
    }
    
    payload = {
        "model": model,
        "messages": messages,
        "max_tokens": kwargs.get("max_tokens", 1000),
        "temperature": kwargs.get("temperature", 0.7)
    }
    
    try:
        response = requests.post(
            "https://ai.costa.app/api/v1/chat/completions",
            headers=headers,
            json=payload,
            timeout=30
        )
        
        # Handle HTTP errors
        if response.status_code == 401:
            raise Exception("Invalid API key or authentication failed")
        elif response.status_code == 403:
            raise Exception("Access denied - check model permissions")
        elif response.status_code == 429:
            raise Exception("Rate limit exceeded - please retry later")
        elif response.status_code >= 500:
            raise Exception("Costa Code service error - please retry")
        
        response.raise_for_status()
        return response.json()
        
    except RequestException as e:
        raise Exception(f"Network error: {str(e)}")
    except Exception as e:
        raise Exception(f"API request failed: {str(e)}")

# Usage with error handling
try:
    result = safe_costa_request(
        api_key="costa_ent_your_key_here",
        model="costa/enterprise-coder-v1",
        messages=[{"role": "user", "content": "Generate secure code"}],
        security_level="high"
    )
    print("Success:", result["choices"][0]["message"]["content"])
    
except Exception as e:
    print("Error:", str(e))

Testing & Validation

import unittest
import requests

class CostaCodeAPITest(unittest.TestCase):
    
    def setUp(self):
        self.api_key = "costa_ent_your_test_key_here"
        self.base_url = "https://ai.costa.app/api/v1"
        self.headers = {
            "Authorization": f"Bearer {self.api_key}",
            "Content-Type": "application/json"
        }
    
    def test_basic_completion(self):
        """Test basic chat completion"""
        payload = {
            "model": "costa/enterprise-coder-v1",
            "messages": [{"role": "user", "content": "Hello, world!"}],
            "max_tokens": 50
        }
        
        response = requests.post(
            f"{self.base_url}/chat/completions",
            headers=self.headers,
            json=payload
        )
        
        self.assertEqual(response.status_code, 200)
        data = response.json()
        self.assertIn("choices", data)
        self.assertGreater(len(data["choices"]), 0)
    
    def test_security_headers(self):
        """Test enterprise security headers"""
        headers = {
            **self.headers,
            "Costa-Security-Level": "maximum",
            "Costa-Audit-Enabled": "true"
        }
        
        payload = {
            "model": "costa/secure-claude-3-5-sonnet",
            "messages": [{"role": "user", "content": "Test security"}],
            "max_tokens": 50
        }
        
        response = requests.post(
            f"{self.base_url}/chat/completions",
            headers=headers,
            json=payload
        )
        
        self.assertEqual(response.status_code, 200)
        data = response.json()
        self.assertIn("security", data)
    
    def test_model_availability(self):
        """Test available models"""
        response = requests.get(
            f"{self.base_url}/models",
            headers=self.headers
        )
        
        self.assertEqual(response.status_code, 200)
        data = response.json()
        model_ids = [model["id"] for model in data["data"]]
        self.assertIn("costa/enterprise-coder-v1", model_ids)

if __name__ == "__main__":
    unittest.main()

Best Practices

1

Authentication Security

  • Store API keys securely using environment variables
  • Rotate API keys regularly
  • Use different keys for development and production
2

Error Handling

  • Implement comprehensive error handling
  • Add retry logic for transient failures
  • Log errors for debugging and monitoring
3

Security Configuration

  • Use appropriate security levels for your use case
  • Enable audit logging for compliance requirements
  • Configure data residency based on regulations
4

Performance Optimization

  • Use streaming for real-time applications
  • Cache responses when appropriate
  • Monitor usage and optimize model selection

Support & Resources


Enterprise Integration: When integrating Costa Code with AI agents, ensure proper security measures are implemented including secure API key storage, appropriate security levels, and compliance configuration for your industry requirements.